
FUN3D v14.0 Training
Linearized Frequency Domain

Kevin Jacobson

Learning Goals

2

What we will cover:
• Static aeroelastic analysis with Stabilized Finite Element (SFE) solver in FUN3D
• Linearized Frequency Domain (LFD) analysis with SFE

What we will not cover:
• Using Generalized Aerodynamics Forces from LFD for aeroelastic prediction

What you should already be familiar with:
• Aeroelastic material covered in the 13.4 training (December 2018 Workshop) and the

updates in the 14.0 training on aeroelasticity
• Details of steady SFE analysis from the 14.0 training on SFE

https://fun3d.larc.nasa.gov/training-7.html
https://fun3d.larc.nasa.gov/session2_2023.pdf
https://fun3d.larc.nasa.gov/training-9.html

Recap from SFE training

3

• Much of the infrastructure for the finite-volume solver also drives SFE

• Mesh partitioning

• Mesh motion including the internal modal aeroelastic solver

• Solution sampling

• sfe.cfg is an additional namelist-like file for SFE-specific inputs

• Smoother inputs add local dissipation for cases with local supersonic flow

• Linear solver settings

• Indices start at 0

Static Aeroelastic Analysis with SFE (1/2)

4

The general steps of static aeroelastic analysis and SFE steady analysis apply:

• Certain fun3d.nml parameters can be overridden by equivalent inputs in the sfe.cfg file

• This lets SFE run in steady mode while using the unsteady modal solver

• As covered in the SFE training, FUN3D will use the SFE solution to compute and report loads based on
both FV and FE integration of the forces

• In version 14.0, the loads applied in the internal modal solver will use the FV force integration during
static aeroelastic coupling

Static Aeroelastic Analysis with SFE (2/2)

5

There are two ways to compute static aeroelastic solutions with SFE:

1. Time-step coupling:

• Couple each steady SFE solver iteration to the modal solver which is running with a large time step
and critical damping

• Similar to the way static aeroelastic solutions are computed with the FV solver

2. Full-solver coupling:

• Fully converge the steady SFE solver with fixed modal displacements, compute new modal
displacements based on the modal forces, and repeat

• Looser coupling but the SFE nonlinear controller does not have to chase a moving target

SFE Static Aeroelastic – Time-Step Coupling

6

1. Set up the fun3d.nml and moving_body.input as if you were doing a static aeroelastic simulation with
the finite-volume solver:

• time_accuracy = “2ndorderOPT”, with a large nondimensional time step

• modal properties in &aeroelastic_modal_data with damp = 0.999

• restart_read = “on_nohistorykept”

2. Set the flow_solver = “sfe” in the fun3d.nml

3. Start from the sfe.cfg file used for the steady analysis. Add the following entry:

time_accuracy = 0 ! Steady analysis

4. Use the command line argument: --aeroelastic_internal

Tutorial Case: BSCW

7

• The Benchmark Supercritical Wing (BSCW) is one of the Aeroelastic Prediction Workshop (AePW) cases.

• The tutorial cases here will step through Case 2 of the 2nd AePW: flutter prediction at Mach=0.74, AoA=0.0
• Steady SFE analysis -> static aeroelastic SFE analysis -> LFD
• Plunge and linearized pitch structural degrees of freedom

• The steady analysis is repeated from the SFE training:
• fun3d.nml

&governing_equations
prandtlnumber_molecular = 0.755
flow_solver = "sfe"

/

• sfe.cfg
smoothing = .true.
number_of_smoothers = 2
smoother_type(1) = ramped

Iteration

R
e

s
id

u
a

l

20 40 60
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Tutorial Case: Static Aeroelastic BSCW – Time-Step Coupling (1/4)

fun3d.nml:
&global

moving_grid = .true.
/
&governing_equations

prandtlnumber_molecular = 0.755
flow_solver = "sfe"

/
&nonlinear_solver_parameters

time_accuracy = "2ndorderOPT"
time_step_nondim = 100.0000000000000
subiterations = 1

/
&code_run_control

steps = 200
stopping_tolerance = 1.000000000000000E-035
restart_read = "on_nohistorykept"

/

8

Tutorial Case: Static Aeroelastic BSCW – Time-Step Coupling (2/4)

moving_body.input:
&body_definitions
n_moving_bodies = 1
body_name(1) = 'wing'
n_defining_bndry(1) = 1
defining_bndry(1,1) = 1
motion_driver(1) = 'aeroelastic'
mesh_movement(1) = 'deform'

/

&aeroelastic_modal_data
nmode(1) = 2
uinf = 4508.4
grefl = 1.0
qinf = 1.1722
freq(1,1) = 20.92
freq(2,1) = 32.67
gmass(1,1) = 1.0
gmass(2,1) = 1.0
damp(1,1) = 0.99999
damp(2,1) = 0.99999

use_modal_deform = .true.
modal_ref_amp(1,1) = 0.005
modal_ref_amp(2,1) = 0.005

/ 9

Tutorial Case: Static Aeroelastic BSCW – Time-Step Coupling (3/3)

sfe.cfg:
time_accuracy = 0
smoothing = .true.
cfl_init = 1e5

Additional input files:
• bscw_coarse_mixed_nc.flow from the steady analysis
• bscw_coarse_mixed_nc_body1_mode*.dat

Command
• mpirun nodet_mpi --gamma 1.136 --aeroelastic_internal

10

11
Iteration

R
e

s
id

u
a

ls

G
e

n
e

ra
li
ze

d
 D

is
p

la
c

e
m

e
n

t

20 40 60 80 100

10
-13

10
-11

10
-9

10
-7

10
-5

0

0.05

0.1

0.15

0.2

R_1
R_2
R_3
R_4
R_5
R_6
Mode 1
Mode 2

Tutorial Case: Static Aeroelastic BSCW – Time-Step Coupling (4/4)

SFE Static Aeroelastic – Full-Solver Coupling

12

• Full-solver coupling inputs are the same as the time step coupling version except using gdisp0
and moddfl=-1 to set the modal displacements and hold them fixed during the simulation

• Write a driver script that does the following in a loop:

1. Run FUN3D with moddfl=-1

2. Compute new modal displacements from the modal forces in the aehist files and the modal
properties, gdisp0 = modal_force / modal_stiffness

• You can add underrelaxation here for stability

3. Write new modal displacements to the gdisp0 entry of moving_body.input

• Example Python script provided in tutorial

Tutorial Case: Static BSCW – Full-Solver Coupling (1/2)

moving_body.input:
&body_definitions

n_moving_bodies = 1
body_name(1) = 'bscw_coarse_mixed_nc'
n_defining_bndry(1) = 1
defining_bndry(1,1) = 1
motion_driver(1) = 'aeroelastic'
mesh_movement(1) = 'deform’

/

&aeroelastic_modal_data
nmode(1) = 2
uinf = 4508.4
grefl = 1.0
qinf = 1.1722
freq(1:2,1) = 20.92, 32.67
gmass(1:2,1) = 1.0, 1.0
moddfl(1:2,1) = -1, -1
gdisp0(1:2,1) = 0, 0
use_modal_deform = .true.
modal_ref_amp(1:2,1) = 0.005, 0.005

/

13

14

Tutorial Case: Static BSCW – Full-Solver Coupling (2/2)

Iteration

R
e

s
id

u
a

ls

G
e

n
e

ra
li
ze

d
 D

is
p

la
c

e
m

e
n

t

0 20 40 60 80

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R_1
R_2
R_3
R_4
R_5
R_6
Mode 1
Mode 2

LFD Background

15

The LFD method is the exact linearization of the flow residual about a steady flow field

• The linearized flow response is computed due to harmonic input of the mesh motion at a prescribed frequency

• Solve this complex-valued linear problem for each structural mode and a range of frequencies

• Generalized Aerodynamic Forces (GAFs) are computed from the linearized mesh motion and flow response

• GAFs can model aerodynamics in a subsequent aeroelastic analysis like a p-k flutter solver

LFD Flutter Analysis Process (1/4)

16

Modal decomposition of the structure

Transfer mode shapes to
the aerodynamic surface Steady SFE analysis

LFD analysis to compute GAFs

Compute qflutter with the p-k method

Done

FUN3D Analysis

Linearized about the rigid (jig) shape:

LFD Flutter Analysis Process (2/4)

17

Modal decomposition of the structure

Transfer mode shapes to
the aerodynamic surface

Steady SFE analysis

Static aeroelastic SFE analysis

LFD analysis to compute GAFs

Compute qflutter with the p-k method

Specify the static aeroelastic dynamic
pressure q∞

Done

FUN3D Analysis

Standard process with static aeroelastic analysis:

LFD Flutter Analysis Process (3/4)

18

Modal decomposition of the structure

Transfer mode shapes to
the aerodynamic surface

Steady SFE analysis

Static aeroelastic SFE analysis

LFD analysis to compute GAFs

Compute qflutter with the p-k method

Specify the static aeroelastic dynamic
pressure q∞

Done FUN3D Analysis

|qflutter-q∞|<tol?

Set q∞ = qflutter

For highly nonlinear conditions, GAFs may be a strong function of q∞:

LFD Flutter Analysis Process (4/4)

19

Modal decomposition of the structure

Transfer flexible mode shapes
to the aerodynamic surface

Steady SFE analysis

Static aeroelastic SFE analysis

LFD analysis to compute GAFs

Compute qflutter with the p-k method

Specify the static aeroelastic dynamic
pressure q∞

Done FUN3D Analysis

|qflutter-q∞|<tol?

Set q∞ = qflutter

Transfer rigid + flexible mode
shapes to the aerodynamic surface

The mode shapes at the LFD stage do not need to match the static aeroelastic modes:

Complex mode FUN3D

20

LFD analysis requires a complex FUN3D executable. You must configure FUN3D to make the executable:

1. ../configure --enable-full-precision --enable-complex {other options}

2. make –j complex

3. make install

• This will create and install both nodet_mpi and complex_nodet_mpi

Things to consider with the complex executable:

• Run the steady and static analyses with the real-valued executable because it will be faster. The
complex executable can read real-valued restart files (*.flow) for LFD

• GFortran requires you to explicitly specify complex numbers in the namelist files. If you use a real-
valued namelist, it will return an error:

• Probable incomplete read of namelist: &reference_physical_properties

• Need to change all float entries from mach_number = 0.7 to mach_number = (0.7, 0.0)

• Intel’s ifort compiler does not require this conversion. It can directly read the floats.

LFD Inputs – moving_body.input (1/2)

21

Start from the static aeroelastic fun3d.nml and moving_body.input files

&aeroelastic_modal_data

• Must use use_modal_deform = .true. for LFD

• The modal mesh deformation is how FUN3D computes the mesh perturbations for the RHS of the
LFD linear problem

• lfd_write_mode_files = .true. – whether to write LFD mode shapes to files for reuse or
recompute at each frequency. Writing modes generates many files to store the volume mode shapes but
saves duplicate calls to the mesh deformation

• lfd_use_existing_mode_files = .false. – whether to read existing LFD mode shapes to files.
The previous run must have used the same number of MPI ranks.

LFD Inputs – moving_body.input (2/2)

22

&aeroelastic_modal_data

• lfd_nfreq = 0 – The number of frequencies at which GAFs will be computed

• Typically, 10-15 frequencies based on reduced frequency, e.g., k = [0.0, 0.01, 0.05, 0.075, 0.1, 0.25,
0.5, 0.75, 1.0, 1.5, 2.0]

• lfd_freq(1) = 0.0 – Frequencies at which to compute GAFs

• Frequencies need to be in same units as structural frequencies, freq [typically rad/s],

• To convert from reduced frequency: ω = k*U∞/b

• lfd_nmodes_perturbed = -1 – The number of modes to perturb for the LFD RHS.

• Default of -1 will perturb each mode sequentially.

• lfd_modes_perturbed(1) = 1 – array of mode numbers to perturb for LFD RHS. Do not need to
specify if lfd_nmodes_perturbed = -1

LFD Inputs – fun3d.nml

23

In the fun3d.nml:
&global

moving_grid = .true.

/

&governing_equations

flow_solver = "sfe"

/

&nonlinear_solver_parameters

time_accuracy = "lfd”

/

• For &code_run_control,

• set steps = (number of perturbed modes) x (number of LFD frequencies) specified in the

moving_body.input. Each “step” is an LFD linear system for a structural mode being perturbed at a frequency

• restart_read = "on_nohistorykept"

LFD Inputs – sfe.cfg

24

• Parameters that affect the flow equations like smoothing or weak_bc need to be the same as the static
aeroelastic simulation

• If you used a ramped smoother to aid convergence, it should be turned off

• LFD linear problems can be difficult to converge

• Typically need to increase the total number of linear solver search directions, max_matvecs = 1500

• On LFD problems where the linear solver stalls, add q-ordering with low prune width to stabilize the linear
solver

• q_ordering = 1

• prune_width = 8.0

• level_of_fill can also be increased to improve linear solver convergence

• Will require more memory to store the preconditioner

Running LFD

25

The LFD solver requires running the complex FUN3D executable:

• mpirun complex_nodet_mpi --aeroelastic_internal

The (number_of_modes_perturbed) x (number_of_lfd_frequencies) LFD linear systems are
independent of each other

• FUN3D uses a loop of the number of modes as the inner loop, i.e. will loop over all the modes
before moving to the next frequency

• The LHS of the linear system is not a function of the perturbed mode, so we can reuse the LHS for a given

frequency

• Given enough computational resources, you can split your LFD linear systems among different
FUN3D analyses for simultaneous evaluation

• Combine the GAFs into a single set as a post-processing step

LFD Screen Output

26

Begin Mesh Movement, Time Step 8 (Current Step 8)

Recomputing distance function:
Wall spacing: 0.472E-04 min, 0.940E-04 max, 0.912E-04 avg

Iter 8 LFD freq = 4 perturbed mode = 2
linear matvecs = 1500 final res = (1.49777e-06,-3.76931e-07) rate = (6.68285e-07,-1.68182e-07)

Begin Mesh Movement, Time Step 9 (Current Step 9)

Recomputing distance function:
Wall spacing: 0.472E-04 min, 0.940E-04 max, 0.912E-04 avg

Iter 9 LFD freq = 5 perturbed mode = 1
linear matvecs = 1500 final res = (1.29336e-08,4.64008e-08) rate = (4.45022e-08,1.59657e-07)

LFD detailed output in {project}_sfe.out

27

• Useful to see if linear solver has stalled, still converging but needs a larger number of matvecs

• Actual residual orders of magnitude larger than GMRES estimated residual can indicate instability in
the linear solver. Try q-ordering with lower prune width

LFD solve for freq = 4 mode = 1
Wall clock time for LFD RHS = 4.8246006484e+01
Wall clock time for LFD LHS via operator overloaded operations using expression templates = 4.8190145409e+01

0 Number of zero or negative diagonals = 0 0 0 0 0 0
0 max preconditioner application growth = (1.5009381434e+02,9.3006267686e-02) rank = 80

Search direction 1 residual = (2.5336772656e-01,0.0000000000e+00) rate = (1.0000000000e+00,0.0000000000e+00)
Search direction 10 residual = (1.1633926634e-01,0.0000000000e+00) rate = (4.5917160767e-01,0.0000000000e+00)
Search direction 20 residual = (1.0496543091e-01,0.0000000000e+00) rate = (4.1428098336e-01,0.0000000000e+00)
Search direction 30 residual = (8.9977322670e-02,0.0000000000e+00) rate = (3.5512542932e-01,0.0000000000e+00)
Search direction 40 residual = (5.8538557591e-02,0.0000000000e+00) rate = (2.3104188677e-01,0.0000000000e+00)
Search direction 50 residual = (4.2648395371e-02,0.0000000000e+00) rate = (1.6832607669e-01,0.0000000000e+00)
Search direction 60 residual = (2.5748253132e-02,0.0000000000e+00) rate = (1.0162404455e-01,0.0000000000e+00)
Search direction 70 residual = (1.5696444610e-02,0.0000000000e+00) rate = (6.1951239107e-02,0.0000000000e+00)
Search direction 80 residual = (1.3025385356e-02,0.0000000000e+00) rate = (5.1409015398e-02,0.0000000000e+00)
Search direction 90 residual = (1.0098664624e-02,0.0000000000e+00) rate = (3.9857738634e-02,0.0000000000e+00)
...
Search direction 1460 residual = (6.2992445625e-08,0.0000000000e+00) rate = (2.4862063720e-07,0.0000000000e+00)
Search direction 1470 residual = (5.6486633968e-08,0.0000000000e+00) rate = (2.2294328775e-07,0.0000000000e+00)
Search direction 1480 residual = (5.2300589866e-08,0.0000000000e+00) rate = (2.0642167247e-07,0.0000000000e+00)
Search direction 1490 residual = (4.7875596947e-08,0.0000000000e+00) rate = (1.8895696621e-07,0.0000000000e+00)
Search direction 1500 residual = (4.3297264838e-08,0.0000000000e+00) rate = (1.7088705584e-07,0.0000000000e+00)

0 Final Search direction 1500 residual = (4.3297264838e-08,0.0000000000e+00) rate = (3.3225392978e-08,1.5404109083e-07)
actual residual = (8.4182422831e-09,3.9029040981e-08) actual rate = (3.3225392978e-08,1.5404109083e-07)

LFD Outputs – {project}_gafs.dat

28

After each linear system, the corresponding GAFs are computed and written to a row of gafs.dat

• First two columns identify the LFD frequency and perturbed mode

• The rest of the row is pairs of real and imaginary parts of generalized force in each mode

(2*number_of_modes columns of data), even if perturbing a subset of modes

Real and imag. parts of modal force in mode 1 Real and imag. parts of modal force in mode 2

…

Reading the GAFs

29

• The GAFs are written to the file as they are computed. The final is blocks of GAFs per frequencies
and each block is the transpose of a typical GAFs matrix

• The following Python function will read the GAFs file into a complex-valued 3D array where the first
index is the frequency index.

import numpy as np

def read_fun3d_lfd_gafs(gafs_filename):

file_data = np.loadtxt(gafs_filename, skiprows=1)

nmodes = (file_data.shape[1] - 2) // 2

nfreq = file_data.shape[0] // nmodes

gafs = file_data[:,2:].reshape(nfreq, nmodes, 2*nmodes)

return (gafs[:,:,::2] + 1j * gafs[:,:,1::2]).transpose(0,2,1)

Other LFD Considerations

30

• LFD mode does not move the mesh from the {project_rootname}.flow file

• You can remove or add modes (e.g., rigid body modes) that were not in the steady analysis

• Lack of machine precision convergence of the steady analysis makes it more difficult to solve the LFD linear
problem

• While it is possible to use a finite-volume solution as the background flow for LFD, it is not recommended
because the finite-volume solution will not satisfy the SFE residual

• Recommend starting with smaller meshes

• SFE’s lower dissipation in means that means you typically can get the same accuracy as finite-volume on
smaller meshes

• Complex variables + large preconditioners can require significantly more memory than a typical steady
analysis

Tutorial Case: BSCW LFD (1/4)

31

• The BSCW is known to flutter at low reduced frequency, so the LFD frequencies are based on the
structural frequencies.

moving_body.input:
&aeroelastic_modal_data

nmode(1) = 2
uinf = 4508.4
qinf = 1.1722
freq(1:2,1) = 20.92, 32.67
gmass(1:2,1) = 1.0, 1.0
use_modal_deform = .true.
modal_ref_amp(1:2,1) = 0.05, 0.05
lfd_nfreq = 15
lfd_freq(1) = 1.0
lfd_freq(2) = 5.0
lfd_freq(3) = 10.0
lfd_freq(4) = 12.0
lfd_freq(5) = 15.0
lfd_freq(6) = 18.0
lfd_freq(7) = 21.0
lfd_freq(8) = 24.0
lfd_freq(9) = 27.0
lfd_freq(10) = 30.0
lfd_freq(11) = 33.0
lfd_freq(12) = 36.0
lfd_freq(13) = 39.0
lfd_freq(14) = 42.0
lfd_freq(15) = 45.0

/

Tutorial Case: BSCW LFD (2/4)

32

fun3d.nml:
&global

moving_grid = .true.
/
&governing_equations

eqn_type = "compressible"
viscous_terms = "turbulent"
prandtlnumber_molecular = 0.755
flow_solver = "sfe"

/
&reference_physical_properties

temperature_units = "Kelvin"
mach_number = 0.74
reynolds_number = 278125.0
temperature = 304.911111
angle_of_attack = 0.0

/
&nonlinear_solver_parameters

time_accuracy = "lfd"
/
&code_run_control

steps = 30 ! 2 modes * 15 frequencies
restart_read = "on_nohistorykept"

/

Tutorial Case: BSCW LFD (3/4)

33

sfe.cfg:
smoothing = .true.
max_matvecs = 1500

Run FUN3D:
mpirun complex_nodet_mpi --gamma 1.136 --aeroelastic_internal

This LFD analysis takes about ~3.5 hours on 400 Skylake cores

Tutorial Case: BSCW LFD (4/4)

34

• Feed GAFs into p-k flutter solver (only evaluated GAFs at experiment dynamic pressure)

X

Dynamic Pressure [psf]

D
a

m
p

in
g

 R
a

ti
o

0 20 40 60 80 100 120 140 160 180
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Experiment
Time Domain FV - Coarse
Time Domain FV - Medium
LFD SFE - Coarse

X

LFD
solved

here

Visualizing the linearized pressure coefficient

35

• As with the SFE adjoint, the LFD solution cannot be visualized with the typical FUN3D sampling
namelists

1. In sfe.cfg, set write_solb = .true. – will write the linearized solution to a solb file:
[project_rootname]_lfd_[step].solb

• The solb file contains the real part of the linearized state, then the imaginary part.

• Recall SFE’s 5th state is temperature

2. Run ref visualize [mesh file] [project_rootname]_lfd_[step].solb
[output].{dat,plt,tec}

3. Combine the linearized state with the steady state to compute linearized pressure coefficient.

36

• Static aeroelastic analysis with SFE
• Timestep coupling
• Solver coupling

• LFD analysis with SFE

LFD Reference Paper:
• “Flutter Analysis with Stabilized Finite Elements based on the Linearized Frequency-

domain Approach” K.E. Jacobson, B.K. Stanford, S.L. Wood, W.K. Anderson, AIAA
SciTech Forum, 2020.

What We Learned

Public Community Questions: fun3d-users@lists.nasa.gov
Private/Proprietary Questions: fun3d-support@lists.nasa.gov

https://arc.aiaa.org/doi/abs/10.2514/6.2020-0403
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0403
mailto:fun3d-users@lists.nasa.gov
mailto:fun3d-support@lists.nasa.gov

